skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yamazaki, Yoshiki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Strong tsunami excitation from slow rupture of shallow subduction zone faults is recognized as a key concern for tsunami hazard assessment. Three months after the 22 July 2020 magnitude 7.8 thrust earthquake struck the plate boundary below the Shumagin Islands, Alaska, a magnitude 7.6 aftershock ruptured with complex intraplate faulting. Despite the smaller size and predominantly strike-slip faulting mechanism inferred from seismic waves for the aftershock, it generated much larger tsunami waves than the mainshock. Here we show through detailed analysis of seismic, geodetic, and tsunami observations of the aftershock that the event implicated unprecedented source complexity, involving weakly tsunamigenic fast rupture of two intraplate faults located below and most likely above the plate boundary, along with induced strongly tsunamigenic slow thrust slip on a third fault near the shelf break likely striking nearly perpendicular to the trench. The thrust slip took over 5 min, giving no clear expression in seismic or geodetic observations while producing the sizeable far-field tsunami. 
    more » « less
  2. Abstract The 2021 shallow plate‐boundary thrust‐faulting and 2023 outer rise normal‐faultingMW7.7 earthquakes southeast of the Loyalty Islands produced significant, well‐recorded tsunamis around the North and South Fiji Basins. The two earthquakes occurred in close proximity on opposing sides of the Southern Vanuatu Trench with similar seismic moments and east‐west rupture lengths but different faulting mechanisms. This provides a basis to examine tsunami sensitivity to source geometry and location for paths in the complex southwest Pacific region. Finite‐fault models of the source processes for both events were inverted from teleseismic body wave data with constraints from forward, nonhydrostatic modeling of regional tide gauge and seafloor pressure sensor recordings. The wave motions are reversed in sign, with a leading crest generated by 1.31 m uplift on the upper plate slope for the 2021 tsunami and a leading trough from 2.37 m subsidence on the subducting plate near the trench for the 2023 tsunami. The more recent outer rise normal faulting produces narrower seafloor deformation beneath deeper water resulting in shorter period tsunami waves that shoal and refract more effectively along seamounts and island chains to produce a more elaborate radiation pattern. The source location relative to seamounts and small islands in the near field influences the energy lobes and directionality of the far‐field tsunami to the north. In contrast, both events have very similar radiation patterns to the south due to absence of major bathymetric features immediately southward of the sources. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract The Kalapana, Hawaii,MW7.7 earthquake on November 29, 1975 generated a local tsunami with at least 14.3 m runup on the southeast shore of Hawaii Island adjacent to Kilauea Volcano. This was the largest locally generated tsunami since the great 1868 Ka'u earthquake located along‐shore to the southwest. Well‐recorded tide gauge and runup observations provide a key benchmark for studies of statewide tsunami hazards from actively deforming southeast Hawaii Island. However, the source process of the earthquake remains controversial, with coastal landsliding and/or offshore normal or thrust faulting mechanisms having been proposed to reconcile features of seismic, geodetic, and tsunami observations. We utilize these diverse observations for the 1975 Kalapana earthquake to deduce a compound faulting model that accounts for the overall tsunamigenesis, involving both landslide block faulting along the shore and slip on the island basal décollement. Thrust slip of 4.5–8.0 m on the offshore décollement produces moderate near‐field runup but controls the far‐field tsunami. The slip distribution implies that residual strain energy was available for the May 4, 2018MW7.2 thrust earthquake during the Kilauea‐East Rift Zone eruption. Local faulting below land contributes to geodetic and seismic observations, but is non‐tsunamigenic and not considered. Slip of 4–10 m on landslide‐like faults, which extend from the Hilina Fault Zone scarp to offshore shallowly dipping faults reaching near the seafloor, triples the near‐field tsunami runup. This compound model clarifies the roles of the faulting components in assessing tsunami hazards for the Hawaiian Islands. 
    more » « less